SCALE 6.3.2 User Manual
SCALE is a comprehensive modeling and simulation suite for nuclear safety analysis and design developed and maintained by Oak Ridge National Laboratory under contract with the U.S. Nuclear Regulatory Commission, U.S. Department of Energy, and the National Nuclear Security Administration to perform reactor physics, criticality safety, radiation shielding, and spent fuel characterization for nuclear facilities and transportation/storage package designs.
Visit the SCALE website for additional information.
- 1. Introduction
- 2. Criticality Safety
- 2.1. CSAS: Control Module For Enhanced Criticality Safety Analysis Sequences With KENO
- 2.1.1. Acknowledgments
- 2.1.2. Introduction
- 2.1.3. Sequence Capabilities
- 2.1.4. Input Data Guide
- 2.1.5. Description of Output
- 2.1.6. Warning and error messages
- 2.1.7. Sample problems
- 2.1.7.1. CSAS5 sample problems
- 2.1.7.2. CSAS6 sample problems
- 2.1.7.2.1. CSAS6 Sample problem 1: Aluminum 30 Degree Pipe Angle Intersection
- 2.1.7.2.2. CSAS6 Sample problem 2: Plexiglas Cross
- 2.1.7.2.3. CSAS6 Sample problem 3: Sphere
- 2.1.7.2.4. CSAS6 Sample problem 4: Sphere Models Using Chords and Mirror Albedos
- 2.1.7.2.5. CSAS6 Sample problem 5: Sphere Models Using Chords and Mirror Albedos
- 2.1.7.2.6. CSAS6 Sample problem 6: Sphere Models Using Chords and Mirror Albedos (Eighth Sphere)
- 2.1.7.2.7. CSAS6 Sample problem 7: Grotesque without the Diaphragm
- 2.1.7.2.8. CSAS6 Sample problem 8 Infinite Array of MOX and UO2 Assemblies
- 2.2. CSAS-Shift: Criticality Safety Analysis Sequence with Shift
- 2.2.1. Introduction
- 2.2.2. CSAS-Shift Input Requirements
- 2.2.3. Sequence Capabilities
- 2.2.4. Input Data Guide
- 2.2.5. Notes to CSAS-Shift Users
- 2.2.6. CSAS-Shift Output
- 2.2.6.1. Shift output
- 2.2.6.1.1. Program verification information
- 2.2.6.1.2. General problem information
- 2.2.6.1.3. Input Warnings
- 2.2.6.1.4. Tables of parameter data
- 2.2.6.1.5. Energy boundaries data
- 2.2.6.1.6. Mixing table data edits
- 2.2.6.1.7. Geometry data edits
- 2.2.6.1.8. Volume information
- 2.2.6.1.9. Initial source edits
- 2.2.6.1.10. K-effectives by generation
- 2.2.6.1.11. Final k-effective edit
- 2.2.6.1.12. Plot of average k-effective by generations run and by generations skipped
- 2.2.6.1.13. Shannon Entropy Diagnostics
- 2.2.6.1.14. Fission densities
- 2.2.6.1.15. Flux Edit
- 2.2.6.1.16. Final results table
- 2.2.6.1.17. Final timing report table
- 2.2.6.1. Shift output
- 2.3. Example Applications of CSAS6
- 2.4. DEVC: Denovo EigenValue Calculation
- 2.5. KMART5 and KMART6: Postprocessors for KENO V.A and KENO-VI
- 2.6. C5toC6: Input File Conversion Programs for CSAS
- 2.1. CSAS: Control Module For Enhanced Criticality Safety Analysis Sequences With KENO
- 3. Reactor Physics
- 3.1. TRITON: A Multipurpose Transport, Depletion, And Sensitivity and Uncertainty Analysis Module
- 3.1.1. Acknowledgments
- 3.1.2. Introduction
- 3.1.3. Input Description
- 3.1.3.1. Cross section processing
- 3.1.3.2. Transport sequences
- 3.1.3.3. Depletion sequences input
- 3.1.3.4. ALIAS block
- 3.1.3.5. TRITON control parameters
- 3.1.3.5.1. Check mode: parm=check
- 3.1.3.5.2. Multigroup cross section processing options
- 3.1.3.5.3. Creating a broad group library: parm=weight, parm=(weight=N)
- 3.1.3.5.4. Inclusion of additional nuclides for depletion: parm=(addnux=N)
- 3.1.3.5.5. Few-group reaction cross section calculation control for continuous energy depletion: parm=(cxm=N)
- 3.1.3.5.6. Infinite dilution cutoff control: parm=(infdcutoff=X)
- 3.1.3.5.7. Override of the maximum number of days per depletion subinterval: PARM=(MAXDAYS=N)
- 3.1.4. Output Files Created by TRITON
- 3.1.5. Output Description
- 3.1.6. TRITON Sample Cases
- 3.1.6.1. TRITON sample problem 1: triton1.inp
- 3.1.6.2. TRITON sample problem 2: triton2.inp
- 3.1.6.3. TRITON sample problem 3: triton3.inp
- 3.1.6.4. TRITON sample problem 5: triton5.inp
- 3.1.6.5. TRITON sample problem 6: triton6.inp
- 3.1.6.6. TRITON sample problem 7: triton7.inp
- 3.1.6.7. TRITON sample problem 8: triton8.inp
- 3.1.6.8. TRITON sample problem 10: triton10.inp
- 3.1.6.9. TRITON sample problem 11: triton11.inp
- 3.1.6.10. TRITON sample problem 12: triton12.inp
- 3.1.6.11. TRITON6 sample problem 1: triton6-1.inp
- 3.1.7. Appendices
- 3.2. POLARIS - 2D Light Water Reactor Lattice Physics Module
- 3.2.1. Introduction
- 3.2.2. SCALE 6.3 Polaris Input Updates
- 3.2.3. Setup
- 3.2.4. Geometry
- 3.2.4.1. geometry<ASSM> – assembly
- 3.2.4.2. geometry<REFL> - reflector
- 3.2.4.3. channel - coolant channel
- 3.2.4.4. hgap - half distance between assemblies
- 3.2.4.5. box - channel box geometry
- 3.2.4.6. pin - pincell comprised of nested geometry zones of variable shape
- 3.2.4.7. pinmap - pin layout
- 3.2.4.8. control<RODLET> - RCCA-type layout
- 3.2.4.9. control<BLADE> - BWR control blade
- 3.2.4.10. insert - insert layout
- 3.2.4.11. slab - slab geometry
- 3.2.4.12. cross - cross geometry
- 3.2.4.13. dxmap and dymap - pin-by-pin displacement maps
- 3.2.4.14. mesh - advanced material dependent meshing options
- 3.2.4.15. detector - insert a detector geometry
- 3.2.5. Materials
- 3.2.5.1. material - material initialization
- 3.2.5.2. composition<NUM|WT> – general atom/wt fraction
- 3.2.5.3. composition<FORM> - general chemical formula
- 3.2.5.4. composition<CONC> - general number density
- 3.2.5.5. composition<LW> - borated light water
- 3.2.5.6. composition<UOX> -UO2 fuel
- 3.2.5.7. composition<UN> - UN fuel
- 3.2.5.8. composition<ENRU> – enriched uranium
- 3.2.5.9. composition library (pre-defined)
- 3.2.5.10. property<SOLP> - soluble poison by weight
- 3.2.5.11. property<DOPANT> - fuel dopant by weight
- 3.2.5.12. property<TWOPHASE> - density property used to control two phase mixtures
- 3.2.5.13. deplete - material depletion and decay
- 3.2.5.14. basis - power basis materials
- 3.2.5.15. shield - cross section self-shielding expansion specification
- 3.2.6. State
- 3.2.6.1. power - total power
- 3.2.6.2. bu - initiate calculation with cumulative burnups
- 3.2.6.3. bui - initiate calculation with cumulative burnups (with restart)
- 3.2.6.4. dbu - initiate calculation with incremental burnups
- 3.2.6.5. t - initiate calculation by cumulative time
- 3.2.6.6. ti - initiate calculation by cumulative time (with restart)
- 3.2.6.7. branch - instantaneous change
- 3.2.6.8. history - time-dependent history
- 3.2.6.9. add<MNAME> - material branch
- 3.2.6.10. add<INAME> - insert/control branch
- 3.2.6.11. add<GNAME> - geometry branch
- 3.2.7. Options
- 3.2.7.1. option<KEFF> - eigenvalue
- 3.2.7.2. option<ESSM> - embedded self-shielding
- 3.2.7.3. option<BOND> - Bondarenko search
- 3.2.7.4. option<DEPL> - depletion
- 3.2.7.5. option<CRITSPEC> - critical spectrum
- 3.2.7.6. option<PRINT> - printing
- 3.2.7.7. option<FG> - few-group cross section generation
- 3.2.7.8. option<RUN> - run time
- 3.2.7.9. option<GEOM> - geometry options
- 3.2.7.10. option<GAMMA> - gamma transport calculation
- 3.2.7.11. option<DATA> – data libraries
- 3.2.8. System
- 3.2.9. Sample Problems
- 3.2.10. Appendices
- 3.2.10.1. SCALE 6.2 Polaris Input Format
- 3.2.10.1.1. box – channel box
- 3.2.10.1.2. pin – pin or pincell
- 3.2.10.1.3. bu – initiate calculation with cumulative burnups
- 3.2.10.1.4. dbu – initiate calculation with incremental burnups
- 3.2.10.1.5. t – initiate calculation by cumulative time
- 3.2.10.1.6. dt – initiate calculation by incremental time
- 3.2.10.1.7. option<ESSM> - embedded self-shielding
- 3.2.10.1.8. option<FG> – few-group cross section generation
- 3.2.10.1.9. state<MNAME> – material state
- 3.2.10.1.10. state<INAME> – insert/control state
- 3.2.10.1.11. state<GNAME> – geometry state
- 3.2.10.1. SCALE 6.2 Polaris Input Format
- 3.1. TRITON: A Multipurpose Transport, Depletion, And Sensitivity and Uncertainty Analysis Module
- 4. Radiation Shielding
- 4.1. MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations
- 4.1.1. Introduction
- 4.1.2. CADIS Methodology
- 4.1.3. MAVRIC input
- 4.1.3.1. Composition block
- 4.1.3.2. SGGP geometry blocks
- 4.1.3.3. Other blocks shared with Monaco
- 4.1.3.4. Importance map block
- 4.1.3.4.1. Constructing a mesh for the SN calculation
- 4.1.3.4.2. Macromaterials for SN geometries
- 4.1.3.4.3. Optimizing source/detector problems
- 4.1.3.4.4. Multiple adjoint sources
- 4.1.3.4.5. Options for Denovo \(S_n\) calculations
- 4.1.3.4.6. Starting with an existing adjoint flux file
- 4.1.3.4.7. Forward-weighting the adjoint source
- 4.1.3.4.8. Forward weighting with an existing forward flux file
- 4.1.3.4.9. Using the importance map
- 4.1.3.4.10. Other notes on importance map calculations
- 4.1.4. MAVRIC output
- 4.1.5. Sample problems
- 4.1.5.1. Graphite shielding measurements with CADIS
- 4.1.5.2. Dose rates outside of a simple cask
- 4.1.5.3. Gamma-ray litho-density logging tool using FW-CADIS
- 4.1.5.4. AOS-100 using FW-CADIS and continuous-energy transport
- 4.1.5.5. Independent spent fuel storage installation
- 4.1.5.6. TN24-P spent fuel cask
- 4.2. MAVRIC CAAS Capability
- 4.3. MAVRIC Utilities
- 4.4. MAVRIC Advanced Features
- 4.4.1. Alternate normalization of the importance map and biased source
- 4.4.2. Importance maps with directional information
- 4.4.3. University of Michigan methods for global variance reduction
- 4.4.4. Using MAVRIC to run fixed-source Denovo calculations
- 4.1. MAVRIC: Monaco with Automated Variance Reduction using Importance Calculations
- 5. Depletion, Activation, and Spent Fuel Source Terms
- 5.1. ORIGEN: Neutron activation, transmutation, fission product generation, & radiation source term calculation
- 5.1.1. Acknowledgements
- 5.1.2. Version Information
- 5.1.3. Method of solution
- 5.1.4. ORIGEN Family of Modules
- 5.1.5. ORIGEN
- 5.1.5.1. Key Features
- 5.1.5.2. Input Description
- 5.1.5.2.1. Calculation Case (case)
- 5.1.5.2.2. Transition Matrix Specification (lib)
- 5.1.5.2.3. Material Specification (mat)
- 5.1.5.2.4. Operating History (power, flux, time)
- 5.1.5.2.5. Printing Options (print)
- 5.1.5.2.6. Saving Results (save)
- 5.1.5.2.7. Decay Emission Calculations (alpha, beta, gamma, neutron)
- 5.1.5.2.8. Processing Options (processing)
- 5.1.5.2.9. Bounds Block
- 5.1.5.2.10. Solver Block
- 5.1.5.2.11. Options Block
- 5.1.5.2.12. Library Building Block
build_lib
- 5.1.5.2.13. Sensitivity Calculation Block
sens
- 5.1.6. ARP
- 5.1.7. OPUS
- 5.1.8. Examples
- 5.1.8.1. Decay of 238U
- 5.1.8.2. 252Cf neutron Emission Spectrum
- 5.1.8.3. Simple Fuel Irradiation Plus Decay
- 5.1.8.4. Three Cycles of Irradiation Plus Decay
- 5.1.8.5. Load Isotopics from an f71 File
- 5.1.8.6. Continuous Feed and Removal
- 5.1.8.7. Calculate Fuel \(\left(\alpha,n \right)\) Emissions in a Glass Matrix
- 5.1.8.8. Create an ORIGEN Decay Library from a Decay Resource
- 5.1.8.9. Create an ORIGEN Reaction Library
- 5.1.8.10. Create an ORIGEN Activation Library
- 5.1.8.11. Create an ORIGEN Library with User-Supplied Cross Sections
- 5.1.8.12. Printing library cross-section values
- 5.1.8.13. Ranking Contribution to Toxicity
- 5.1.8.14. Spectrum plots with OPUS
- 5.1.8.15. Isotopic Weight Percentages for Uranium and Plutonium During Decay
- 5.1.8.16. User-Specified Response Function in OPUS
- 5.1.9. Appendices
- 5.1.9.1. PRISM
- 5.1.9.2. ARPLIB
- 5.1.9.3. XSECLIST
- 5.1.9.4. COUPLE
- 5.1.9.4.1. Key Features
- 5.1.9.4.2. Input Description
- 5.1.9.4.2.1. Block1: titles, unit numbers, and case controls.
- 5.1.9.4.2.2. Block2: nuclides with fission yields and weighting flux spectrum
- 5.1.9.4.2.3. Block3: array dimensions for decay library creation
- 5.1.9.4.2.4. Block6: number of user-defined transition coefficients
- 5.1.9.4.2.5. Block8: user-defined transition coefficients
- 5.2. OBIWAN: A tool for viewing and manipulating Origen binary files
- 5.3. ORIGEN Reactor Libraries
- 5.4. ORIGAMI: A Code for Computing Assembly Isotopics with ORIGEN
- 5.4.1. Acknowledgments
- 5.4.2. Introduction
- 5.4.3. Computational Methods
- 5.4.4. ORIGAMI Input Description
- 5.4.5. ORIGAMI Input/Output Files
- 5.4.6. Parallel Execution on Linux Clusters
- 5.4.7. Sample Problems
- 5.4.7.1. Sample problem 1: fully lumped assembly model
- 5.4.7.2. Sample problem 2: lumped axial depletion assembly model
- 5.4.7.3. Sample problem 3: restart decay calculation for lumped axial depletion assembly model
- 5.4.7.4. Sample problem 4: Simplified 3D multi-pin model
- 5.4.7.5. Sample problem 5: PWR 3D assembly model
- 5.1. ORIGEN: Neutron activation, transmutation, fission product generation, & radiation source term calculation
- 6. Sensitivity and Uncertainty Analysis
- 6.1. TSUNAMI-1D: Control Module for One-Dimensional Cross-Section Sensitivity and Uncertainty
- 6.1.1. ABSTRACT
- 6.1.2. ACKNOWLEDGMENTS
- 6.1.3. Introduction
- 6.1.4. TSUNAMI-1D Input Description
- 6.1.4.1. Analytical sequence specification record
- 6.1.4.2. XSProc
- 6.1.4.3. Model problem data
- 6.1.4.4. Sensitivity and uncertainty calculation data
- 6.1.4.4.1. Response definition data
- 6.1.4.4.1.1. Single-mixture flux response function
- 6.1.4.4.1.2. Multiple-mixture flux response
- 6.1.4.4.1.3. Single-mixture, single-nuclide, microscopic cross-section response
- 6.1.4.4.1.4. Single-mixture, single-nuclide, macroscopic cross-section response
- 6.1.4.4.1.5. Single-mixture, multiple-nuclide, macroscopic cross-section response
- 6.1.4.4.1.6. Multiple-mixture, single-nuclide, macroscopic cross-section response
- 6.1.4.4.1.7. Multiple-mixture, multiple-nuclide, macroscopic cross-section response
- 6.1.4.4.2. System response definition data
- 6.1.4.4.3. SAMS data
- 6.1.4.4.4. HTML and user-input covariance data
- 6.1.4.4.1. Response definition data
- 6.1.4.5. Input termination
- 6.1.5. Example Problems
- 6.1.6. Appendices
- 6.2. TSUNAMI-3D: Control Module for Three-Dimensional Cross Section Sensitivity and Uncertainty Analysis for Criticality
- 6.3. TSUNAMI Utility Modules
- 6.3.1. TSUNAMI-IP
- 6.3.2. BONAMIST
- 6.3.3. References
- 6.3.4. Appendices
- 6.4. Sampler: Statistical Uncertainty Analysis with SCALE Sequences
- 6.4.1. Introduction
- 6.4.2. Methodology
- 6.4.3. Input Description
- 6.4.3.1. Overall input structure
- 6.4.3.2. Configuration parameters
- 6.4.3.3. Sampler responses
- 6.4.3.3.1. OPUS PLT file responses
- 6.4.3.3.2. TRITON homogenized cross-section responses
- 6.4.3.3.3. Standard composition file responses
- 6.4.3.3.4. ORIGEN concentration (F71) responses
- 6.4.3.3.5. Generic regular expression (GREP) responses
- 6.4.3.3.6. Sampled variable values
- 6.4.3.3.7. Quick response definition overview
- 6.4.3.4. Saving files
- 6.4.3.5. Parametric studies
- 6.4.3.6. Geometry and material perturbations
- 6.4.3.7. Response analysis
- 6.4.3.8. Converting a standard SCALE input to a Sampler input
- 6.4.4. Execution Details
- 6.4.5. Example Problems and Output Description
- 6.4.6. SCALE Input Retrieval ENgine (SIREN)
- 6.4.7. Expression Operators and Functions for Sampler
- 6.4.8. Guidelines for Running Sampler in Parallel
- 6.5. VADER: Trending Analysis for Code/Data Validation
- 6.6. SAMS: Sensitivity Analysis Module for SCALE
- 6.6.1. Introduction
- 6.6.2. Theory
- 6.6.3. SAMS Input Description
- 6.6.4. Sample Problems And Output Description
- 6.6.5. Error And Warning Messages
- 6.7. TSAR: Tool for Sensitivity Analysis of Reactivity Responses
- 6.8. TSURFER: An Adjustment Code to Determine Biases and Uncertainties in Nuclear System Responses by Consolidating Differential Data and Benchmark Integral Experiments
- 6.8.1. Introduction
- 6.8.2. Sources of Response Uncertainty
- 6.8.3. Analysis Procedure
- 6.8.4. TSURFER Computation Methodology
- 6.8.5. TSURFER Input Description
- 6.8.6. Sample Problem Input and Output Description
- 6.8.7. Appendices
- 6.1. TSUNAMI-1D: Control Module for One-Dimensional Cross-Section Sensitivity and Uncertainty
- 7. Material Specification and Cross Section Processing
- 7.1. XSPROC: The Material and Cross Section Processing Module for SCALE
- 7.1.1. Introduction
- 7.1.2. Techniques
- 7.1.3. XSPROC Input Data Guide
- 7.1.3.1. XSProc data checking and resonance processing options
- 7.1.3.2. XSProc input data
- 7.1.3.3. Standard composition specification data
- 7.1.3.4. Unit cell specification for infinite homogeneous problems
- 7.1.3.5. Unit cell specification for LATTICECELL problems
- 7.1.3.6. Unit cell specification for MULTIREGION cells
- 7.1.3.7. Unit cell specification for doubly heterogeneous (DOUBLEHET) cells
- 7.1.3.8. Optional MORE DATA parameter data
- 7.1.3.9. Optional CENTRM DATA parameter data
- 7.1.4. Appendices
- 7.1.4.1. XSProc: Standard Composition Examples
- 7.1.4.1.1. Standard composition fundamentals
- 7.1.4.1.2. Basic standard composition specifications
- 7.1.4.1.3. User-defined (arbitrary) chemical compound specifications
- 7.1.4.1.4. User-defined (arbitrary) mixture/alloy specifications
- 7.1.4.1.5. Fissile solution specifications
- 7.1.4.1.6. Combinations of standard composition materials to define a mixture
- 7.1.4.1.7. Combinations of user-defined compound and user-defined mixture/alloy to define a mixture
- 7.1.4.1.8. Combinations of solutions to define a mixture
- 7.1.4.1.9. Combinations of basic and user-defined standard compositions to define a mixture
- 7.1.4.1.10. Combinations of basic and solution standard compositions to define a mixture
- 7.1.4.1.11. Combinations of user-defined compound and solution to define a mixture
- 7.1.4.2. XSProc Standard Composition Examples
- 7.1.4.3. Examples of Complete XSProc Input Data
- 7.1.4.3.1. Infinite homogeneous medium input data
- 7.1.4.3.2. LATTICECELL input data
- 7.1.4.3.3. MULTIREGION input data
- 7.1.4.3.4. DOUBLEHET input data
- 7.1.4.3.5. Two methods of specifying a fissile solution
- 7.1.4.3.6. Multiple unit cells in a single problem
- 7.1.4.3.7. Multiple fissile mixtures in a single unit cell
- 7.1.4.3.8. Cell weighting an infinite homogeneous problem
- 7.1.4.3.9. Cell weighting a LATTICECELL problem
- 7.1.4.3.10. Cell weighting a MULTIREGION problem
- 7.1.4.1. XSProc: Standard Composition Examples
- 7.2. Standard Composition Library
- 7.3. BONAMI: Resonance Self-Shielding by the Bondarenko Method
- 7.4. CENTRM: A Neutron Transport Code for Computing Continuous-Energy Spectra in General One-Dimensional Geometries and Two-Dimensional Lattice Cells
- 7.4.1. Introduction
- 7.4.2. Theory and Analytical Models
- 7.4.2.1. Energy/lethargy ranges for MG and PW calculations
- 7.4.2.2. The Boltzmann equation for neutron transport
- 7.4.2.3. Legendre moments of the scattering source
- 7.4.2.4. Sub-moment expansion of the epithermal scattering source
- 7.4.2.5. Multigroup Boltzmann equation
- 7.4.2.6. The Boltzmann equation within the PW range
- 7.4.2.6.1. Scattering sources for the PW range
- 7.4.2.6.2. Downscatter source from high region of the UMR to the PW range (SHI)
- 7.4.2.6.3. Scattering sources from UMR transition region and epithermal PW range
- 7.4.2.6.4. PW thermal scatter source
- 7.4.2.6.5. Downscatter source from the epithermal PW range to the LMR
- 7.4.2.6.6. Thermal scatter sources from LMR and PW range
- 7.4.2.7. Determination of energy mesh for PW flux calculation
- 7.4.2.8. CENTRM cross sections and fixed sources
- 7.4.3. Available Methods for Solving Transport Equation
- 7.4.4. CENTRM Input Data
- 7.4.5. Example Case
- 7.4.6. CENTRM PW library and flux file formats
- 7.4.7. CENTRM Error Messages
- 7.5. PMC: A Program to Produce Multigroup Cross Sections Using Pointwise Energy Spectra from CENTRM
- 7.6. CHOPS: Module to Compute Pointwise Disadvantage Factors and Produce a Cell-Homogenized CENTRM Library
- 7.7. CRAWDAD: Module to Produce CENTRM-Formatted Continuous-Energy Nuclear Data Libraries
- 7.8. MCDancoff: Monte-Carlo based Dancoff Factor Calculation
- 7.9. CAJUN: Module for Combining and Manipulating CENTRM Continuous-Energy Libraries
- 7.1. XSPROC: The Material and Cross Section Processing Module for SCALE
- 8. Monte Carlo Transport
- 8.1. KENO: A Monte Carlo Criticality Program
- 8.1.1. ACKNOWLEDGMENTS
- 8.1.2. Introduction to KENO
- 8.1.3. KENO Data Guide
- 8.1.3.1. Keno input outline
- 8.1.3.2. Procedure for data input
- 8.1.3.3. Title and parameter data
- 8.1.3.4. Geometry data
- 8.1.3.5. ARRAY Data
- 8.1.3.6. Albedo data
- 8.1.3.7. Biasing or weighting data
- 8.1.3.8. Start data
- 8.1.3.9. Extra 1-D XSECS IDs data
- 8.1.3.10. Mixing table data
- 8.1.3.11. Plot data
- 8.1.3.12. Energy group boundary data
- 8.1.3.13. Volume data
- 8.1.3.14. Grid geometry data
- 8.1.3.15. Reaction data
- 8.1.4. Notes for KENO Users
- 8.1.4.1. Data entry
- 8.1.4.2. Default logical unit numbers for KENO
- 8.1.4.3. Parameter input
- 8.1.4.4. Cross sections
- 8.1.4.5. Mixing table
- 8.1.4.6. Geometry Considerations
- 8.1.4.7. Alternative sample problem mockups
- 8.1.4.8. Initial starting distributions with Start data
- 8.1.4.9. Biasing or weighting data for multigroup mode
- 8.1.4.10. Color plots
- 8.1.4.11. KENO Multiple Mesh and Mesh-based Quantity Specifications
- 8.1.4.12. Random sequence
- 8.1.4.13. Matrix k-effective
- 8.1.4.14. Deviations
- 8.1.4.15. Generation time and lifetime
- 8.1.4.16. Energy of the Average Lethargy of Fission
- 8.1.5. Description of Output
- 8.1.5.1. Program verification information
- 8.1.5.2. Tables of parameter data
- 8.1.5.3. Unprocessed geometry input data
- 8.1.5.4. Table of data sets used in the problem
- 8.1.5.5. Table of additional information
- 8.1.5.6. Cross section data edits for the continuous energy mode
- 8.1.5.7. Mixing table data edits
- 8.1.5.8. Albedo cross section correspondence
- 8.1.5.9. 1-D macroscopic cross sections
- 8.1.5.10. Extra 1-d cross sections
- 8.1.5.11. 2-D macroscopic cross sections
- 8.1.5.12. Probabilities and angles
- 8.1.5.13. Energy boundaries
- 8.1.5.14. Array summary
- 8.1.5.15. Geometry data edits
- 8.1.5.16. Unit orientation description
- 8.1.5.17. Volume information
- 8.1.5.18. Mesh volumes output edit
- 8.1.5.19. Grid definitions
- 8.1.5.20. Biasing information
- 8.1.5.21. Group-dependent weights
- 8.1.5.22. Plot representation
- 8.1.5.23. Initial source and final pretracking edits
- 8.1.5.24. Reference center for flux moment/angular flux transform
- 8.1.5.25. Print starting points
- 8.1.5.26. K-effectives by generation
- 8.1.5.27. Problem characterization edit
- 8.1.5.28. Final k-effective edit
- 8.1.5.29. Plot of average k-effective by generation run
- 8.1.5.30. Plot of average k-effective by generations skipped
- 8.1.5.31. Final edit of fissions, absorptions, and leakage
- 8.1.5.32. Matrix k-effective by position index
- 8.1.5.33. Fission production by position index matrix
- 8.1.5.34. Source vector by position index
- 8.1.5.35. Cofactor k-effective by position index
- 8.1.5.36. Matrix k-effective by unit number
- 8.1.5.37. Fission production by unit number matrix
- 8.1.5.38. Source vector by unit number
- 8.1.5.39. Cofactor k-effective by unit number
- 8.1.5.40. Matrix k-effective by hole number
- 8.1.5.41. Fission production by hole number matrix
- 8.1.5.42. Source vector by hole number
- 8.1.5.43. Cofactor k-effective by hole number
- 8.1.5.44. Matrix k-effective by array number
- 8.1.5.45. Fission production by array number matrix
- 8.1.5.46. Source vector by array number
- 8.1.5.47. Cofactor k-effective by array number
- 8.1.5.48. Mesh tallies
- 8.1.5.49. Reaction tally
- 8.1.5.50. Source convergence diagnostics edit
- 8.1.5.51. Fission density edit
- 8.1.5.52. Flux edit
- 8.1.5.53. Frequency distributions
- 8.1.5.54. Summary of parallel performance
- 8.1.5.55. Final results table
- 8.1.5.56. HTML output
- 8.1.5.56.1. HTML output: Program verification information
- 8.1.5.56.2. HTML output: Messages
- 8.1.5.56.3. HTML output: Tables of parameter data
- 8.1.5.56.4. HTML output: Table of additional information
- 8.1.5.56.5. HTML output: Mixing table data
- 8.1.5.56.6. HTML output: 1D macroscopic cross sections
- 8.1.5.56.7. HTML output: 2-D macroscopic cross sections
- 8.1.5.56.8. HTML output: Probabilities and angles
- 8.1.5.56.9. HTML output: Geometry data
- 8.1.5.56.10. HTML output: Volume information
- 8.1.5.56.11. HTML output: Biasing information
- 8.1.5.56.12. HTML output: Group-dependent weights
- 8.1.5.56.13. HTML output: Plot representation
- 8.1.5.56.14. HTML output: Initial source and final pretracking edits
- 8.1.5.56.15. HTML output: Reference center for flux moment/angular flux tranform
- 8.1.5.56.16. HTML output: K-effectives by generation
- 8.1.5.56.17. HTML output: Problem characterization edit
- 8.1.5.56.18. HTML output: Final k-effective edit
- 8.1.5.56.19. HTML output: Final edit of fissions, absorptions, and leakage
- 8.1.5.56.20. HTML output: Matrix k-effective by position index
- 8.1.5.56.21. HTML output: Fission production by position index matrix
- 8.1.5.56.22. HTML output: Source vector by position index
- 8.1.5.56.23. HTML output: Cofactor k-effective by position index
- 8.1.5.56.24. HTML output: Matrix k-effective, fission production, source vector and cofactor k-effective by unit number
- 8.1.5.56.25. HTML output: Matrix k-effective, fission production, source vector and cofactor k-effective by hole number
- 8.1.5.56.26. HTML output: Matrix k-effective, fission production, source vector and cofactor k-effective by array number
- 8.1.5.56.27. HTML output: Fission density edit
- 8.1.5.56.28. HTML output: Flux edit
- 8.1.5.56.29. HTML output: Final results table
- 8.1.6. Warning messages and error messages
- 8.1.7. Theory and Techniques
- 8.1.7.1. The transport equation
- 8.1.7.2. Continuous energy mode solution procedure
- 8.1.7.2.1. Problem initialization
- 8.1.7.2.2. Initial source distribution
- 8.1.7.2.3. Collision site selection
- 8.1.7.2.4. Collision treatment
- 8.1.7.2.5. Fission treatment
- 8.1.7.2.6. Sampling details
- 8.1.7.2.7. Kinematics data
- 8.1.7.2.8. Thermal scattering effects
- 8.1.7.2.9. Doppler broadening rejection correction method
- 8.1.7.2.10. Doppler broadening methods
- 8.1.7.3. Multigroup mode solution procedure
- 8.1.7.4. KENO Geometries
- 8.1.7.5. Fluxes
- 8.1.7.6. Reaction Rate and Few Group Micro Cross Section Calculations
- 8.1.7.7. Source Convergence Diagnostics
- 8.1.8. Appendices
- 8.1.8.1. KENO V.a Shape Descriptions
- 8.1.8.2. KENO VI Shape Descriptions
- 8.1.8.3. KENO Sample Problems
- 8.1.8.3.1. CSAS-MG data
- 8.1.8.3.2. KENO V.a sample problem data
- 8.1.8.3.2.1. Sample Problem 1 2C8 BARE
- 8.1.8.3.2.2. Sample Problem 2 CASE 2C8 BARE WITH 8 UNIT TYPES MATRIX CALCULATION
- 8.1.8.3.2.3. Sample Problem 3 2C8 15.24-CM PARAFFIN REFL
- 8.1.8.3.2.4. Sample Problem 4 2C8 15.24-CM PARAFFIN REFL AUTOMATIC REFL
- 8.1.8.3.2.5. Sample Problem 5 2C8 12-INCH PARAFFIN ALBEDO REFLECTOR
- 8.1.8.3.2.6. Sample Problem 6 ONE 2C8 UNIT (SINGLE UNIT)
- 8.1.8.3.2.7. Sample Problem 7 BARE 2C8 USING SPECULAR REFLECTION
- 8.1.8.3.2.8. Sample Problem 8 INFINITELY LONG CYLINDER FROM 2C8 UNIT
- 8.1.8.3.2.9. Sample Problem 9 INFINITE ARRAY OF 2C8 UNITS
- 8.1.8.3.2.10. Sample Problem 10 2C8 BARE WRITE RESTART
- 8.1.8.3.2.11. Sample Problem 11 2C8 BARE READ RESTART DATA
- 8.1.8.3.2.12. Sample Problem 12 4 AQUEOUS 4 METAL
- 8.1.8.3.2.13. Sample Problem 13 TWO CUBOIDS IN A CYLINDRICAL ANNULUS
- 8.1.8.3.2.14. Sample Problem 14 U METAL CYLINDER IN AN ANNULUS
- 8.1.8.3.2.15. Sample Problem 15 SMALL WATER REFLECTED SPHERE ON PLEXIGLAS COLLAR
- 8.1.8.3.2.16. Sample Problem 16 UO2F2 INFINITE SLAB K-INFINITY
- 8.1.8.3.2.17. Sample Problem 17 93% UO2F2 SOLUTION SPHERE ADJOINT CALCULATION
- 8.1.8.3.2.18. Sample Problem 18 1F27 DEMONSTRATION OF OPTIONS
- 8.1.8.3.2.19. Sample Problem 19 4 AQUEOUS 4 METAL ARRAY OF ARRAYS (SAMP PROB 12)
- 8.1.8.3.2.20. Sample Problem 20 TRIANGULAR PITCHED ARRAY
- 8.1.8.3.2.21. Sample Problem 21 PARTIALLY FILLED SPHERE
- 8.1.8.3.2.22. Sample Problem 22 CASE 2C8 BARE WITH 3 NESTED HOLES, EACH IS EQUAL VOLUME
- 8.1.8.3.2.23. Sample Problem 23 CASE 2C8 BARE AS STACKED CYLINDERS
- 8.1.8.3.2.24. Sample Problem 24 CASE 2C8 BARE AS STACKED ROTATED CYLINDERS
- 8.1.8.3.2.25. Sample Problem 25 CASE 2C8 BARE AS MIXED YHEMICYLINDERS
- 8.1.8.3.2.26. Sample Problem 26 (KENO V.a ONLY) CASE 2C8 BARE AS MIXED ZHEMICYLINDERS WITH ORIGINS
- 8.1.8.3.2.27. Sample Problem 27 (KENO V.a oONLY) CASE 2C8 BARE AS MIXED XHEMICYLINDERS WITH ORIGINS
- 8.1.8.3.2.28. Sample Problem 28 (KENO V.a oONLY) CASE 2C8 BARE AS MIXED YHEMICYLINDERS WITH ORIGINS
- 8.1.8.3.2.29. Sample Problem 29 BARE CRITICAL SPHERE 3.4420-IN. RADIUS
- 8.1.8.3.2.30. Sample Problem 30 (KENO V.a ONLY) BARE CRITICAL SPHERE Z HEMISPHERE MODEL 3.4420-IN. RADIUS
- 8.1.8.3.2.31. Sample Problem 31 (KENO V.a ONLY) BARE CRITICAL SPHERE X HEMISPHERE MODEL 3.4420-IN. RADIUS
- 8.1.8.3.2.32. Sample Problem 32 (KENO V.a ONLY) BARE CRITICAL SPHERE Y HEMISPHERE MODEL 3.4420-IN. RADIUS
- 8.1.8.3.2.33. Sample Problem 33 CRITICAL TRIANGULAR PITCHED ARRAY OF ANNULAR RODS
- 8.2. Monaco: A Fixed-Source Monte Carlo Transport Code for Shielding Applications
- 8.2.1. Introduction
- 8.2.2. Monaco Capabilities
- 8.2.3. Monaco Input Files
- 8.2.4. Monaco Output
- 8.2.5. Example Problems
- 8.1. KENO: A Monte Carlo Criticality Program
- 9. Deterministic Transport
- 9.1. XSDRNPM: A One-Dimensional Discrete-Ordinates Code for Transport Analysis
- 9.1.1. Introduction
- 9.1.2. Theory and Procedures
- 9.1.2.1. One-dimensional discrete-ordinates theory
- 9.1.2.2. Multigroup one-dimensional Boltzmann equation
- 9.1.2.3. Scattering source term
- 9.1.2.4. Discrete-ordinates difference equations
- 9.1.2.5. Weighted-difference formulation for discrete-ordinates equations
- 9.1.2.6. Boundary conditions
- 9.1.2.7. Fixed sources
- 9.1.2.8. Dimension search calculations
- 9.1.2.9. Alpa Search
- 9.1.2.10. Iteration and convergence tests
- 9.1.2.11. Group banding (scaling rebalance)
- 9.1.2.12. Buckling correction
- 9.1.2.13. Void streaming correction
- 9.1.2.14. Cross-section weighting
- 9.1.2.15. Adjoint calculations
- 9.1.2.16. Coupled neutron-photon calculations
- 9.1.2.17. Diffusion theory option
- 9.1.2.18. Infinite-medium theory option
- 9.1.2.19. BN theory option
- 9.1.3. XSDRNPM Input Data
- 9.1.4. XSDRNPM Input/Output Assignments
- 9.1.5. XSDRN Sample Problem
- 9.1.6. Output Cross Sections
- 9.1.7. Error messages
- 9.1.8. Appendices
- 9.2. NEWT: A New Transport Algorithm for Two-Dimensional Discrete-Ordinates Analysis in Non-Orthogonal Geometries
- 9.2.1. Acknowledgments
- 9.2.2. Introduction
- 9.2.3. Theory and Procedures
- 9.2.3.1. Boltzmann transport equation
- 9.2.3.2. The step characteristic approximation
- 9.2.3.3. The Extended Step Characteristic approach
- 9.2.3.3.1. Cell properties and geometries
- 9.2.3.3.2. Relationships between cells
- 9.2.3.3.3. The set of characteristic directions
- 9.2.3.3.4. Angular flux at a cell boundary
- 9.2.3.3.5. Mapping a characteristic vector into the two-dimensional problem domain
- 9.2.3.3.6. Neutron balance within a computational cell
- 9.2.3.4. Coarse-mesh finite-difference acceleration
- 9.2.3.5. Assembly discontinuity factors
- 9.2.4. Input Formats
- 9.2.4.1. Overview of newt data blocks
- 9.2.4.2. Parameter block
- 9.2.4.3. Material Block
- 9.2.4.4. Source block
- 9.2.4.5. Collapse block
- 9.2.4.6. Geometry block
- 9.2.4.6.1. Bodies
- 9.2.4.6.1.1. Shapes
- 9.2.4.6.1.2. Cylinder
- 9.2.4.6.1.3. Cuboid
- 9.2.4.6.1.4. Hexprism and rhexprism
- 9.2.4.6.1.5. Wedge
- 9.2.4.6.1.6. Polygon
- 9.2.4.6.1.7. Example of shape specifications
- 9.2.4.6.1.8. Shape modifier commands
- 9.2.4.6.1.9. ORIGIN
- 9.2.4.6.1.10. Rotate
- 9.2.4.6.1.11. Chord
- 9.2.4.6.1.12. Com
- 9.2.4.6.1.13. Sides
- 9.2.4.6.1.14. Holes
- 9.2.4.6.1.15. Array placement
- 9.2.4.6.2. Media specifications
- 9.2.4.6.3. Geometry block examples
- 9.2.4.6.4. Summary of geometry specifications
- 9.2.4.6.1. Bodies
- 9.2.4.7. Boundary conditions
- 9.2.4.8. General cross section weighting
- 9.2.4.8.1. Scattering cross section transfer matrix weighting
- 9.2.4.8.2. Weighting of the collapsed fission spectrum, \(\chi\)
- 9.2.4.8.3. Weighting of the number of neutrons per fission
- 9.2.4.8.4. Weighting of (n,2n), (n,3n), and (n,4n) cross sections
- 9.2.4.8.5. Calculation and weighting of transport cross sections
- 9.2.4.9. Array definition
- 9.2.4.10. Homogenization block
- 9.2.4.11. Assembly discontinuity factors
- 9.2.4.12. Flux planes
- 9.2.4.13. Mixing table block
- 9.2.5. Examples of Inputs
- 9.2.6. Description of Output
- 9.2.6.1. NEWT banner
- 9.2.6.2. Input summary
- 9.2.6.2.1. Control options
- 9.2.6.2.2. Output options
- 9.2.6.2.3. Input/output unit assignments
- 9.2.6.2.4. Convergence control parameters
- 9.2.6.2.5. Pin-power edit requests
- 9.2.6.2.6. Geometry specifications
- 9.2.6.2.7. Homogenization region specifications
- 9.2.6.2.8. Material specifications
- 9.2.6.2.9. Derived parameters
- 9.2.6.2.10. Energy group structure listing
- 9.2.6.2.11. Quadrature parameters
- 9.2.6.2.12. Mixture volumes listing
- 9.2.6.2.13. Mixing table listing
- 9.2.6.2.14. Nuclide cross sections
- 9.2.6.2.15. Mixture cross sections
- 9.2.6.3. Iteration history
- 9.2.6.4. Four-factor formula
- 9.2.6.5. Fine-group balance tables
- 9.2.6.6. Planar fluxes and currents
- 9.2.6.7. Pin-power edits
- 9.2.6.8. Broad-group collapse
- 9.2.6.9. Critical spectrum edit
- 9.2.6.10. Assembly discontinuity factors
- 9.2.6.11. Groupwise form factors
- 9.2.6.12. End-of-calculation banner
- 9.2.6.13. Media zone edits
- 9.1. XSDRNPM: A One-Dimensional Discrete-Ordinates Code for Transport Analysis
- 10. SCALE Nuclear Data Libraries
- 10.1. SCALE Cross Section Libraries
- 10.1.1. Introduction
- 10.1.2. Description of the SCALE Cross Section Libraries
- 10.1.2.1. The 252-group ENDF/B libraries
- 10.1.2.2. The 56-group library
- 10.1.2.3. The 302-group library
- 10.1.2.4. The test-8grp library for code testing
- 10.1.2.5. The 200N-47G library for shielding
- 10.1.2.6. The 28N-19G shielding libraries
- 10.1.2.7. The continuous-energy libraries
- 10.1.2.8. Gleaning Data from the Multigroup Libraries
- 10.1.3. Appendices
- 10.2. ORIGEN data resources
- 10.2.1. Acknowledgements
- 10.2.2. Version Information
- 10.2.3. Introduction
- 10.2.4. Decay Resource
- 10.2.5. Neutron Reaction Resource
- 10.2.6. Fission Yield Resource
- 10.2.7. Energy Resource
- 10.2.8. Emission Resources
- 10.2.9. Decay Resource Format
- 10.2.10. Fission Yield Resource Format
- 10.2.11. Gamma Resource Format
- 10.2.12. ORIGEN "end7dec" nuclide set
- 10.2.13. Decay Resource Contents
- 10.2.14. Reaction Resource Contents
- 10.3. SCALE Nuclear Data Covariance Library
- 10.1. SCALE Cross Section Libraries
- 11. Utility Modules for SCALE Libraries
- 11.1. AMPX Library Utility Modules
- 11.1.1. Introduction
- 11.1.2. AJAX: MODULE TO MERGE, COLLECT, ASSEMBLE, REORDER, JOIN, AND/OR COPY SELECTED DATA FROM AMPX MASTER LIBRARIES
- 11.1.3. ALPO: MODULE TO CONVERT AMPX LIBRARIES INTO ANISN FORMAT
- 11.1.4. CADILLAC: MODULE TO MERGE MULTIPLE COVARIANCE DATA FILES
- 11.1.5. COGNAC: MODULE TO CONVERT COVARIANCE DATA FILES IN COVERX FORMAT
- 11.1.6. LAVA: MODULE TO MAKE AN AMPX WORKING LIBRARY FROM AN ANISN LIBRARY
- 11.1.7. MALOCS: MODULE TO COLLAPSE AMPX MASTER CROSS-SECTION LIBRARIES
- 11.1.8. PALEALE: MODULE TO LIST INFORMATION FROM AMPX LIBRARIES
- 11.1.9. RADE: MODULE TO CHECK AMPX CROSS-SECTION LIBRARIES
- 11.1.10. TOC: MODULE TO PRINT AN AMPX LIBRARY TABLE OF CONTENTS
- 11.2. WORKER: SCALE System Module for Creating and Modifying Working-Format Libraries
- 11.3. COMPOZ Data Guide
- 11.4. ICE: Module to Mix Multigroup Cross Sections
- 11.5. FIDO Input System
- 11.6. MALOCS2: Module To Collapse AMPX Master Cross Section libraries
- 11.1. AMPX Library Utility Modules
- 12. Installing and Building SCALE