5.1. ORIGEN: Neutron activation, transmutation, fission product generation, & radiation source term calculation

ORIGEN (Oak Ridge Isotope Generation code) calculates time-dependent concentrations, activities, and radiation source terms for a large number of isotopes simultaneously generated or depleted by neutron transmutation, fission, and radioactive decay. ORIGEN is used internally within SCALE’s TRITON and Polaris sequences to perform depletion and decay. As a stand-alone SCALE module, ORIGEN provides additional unique capabilities to (1) simulate continuous nuclide feed and chemical removal, which can be used to model reprocessing or liquid fuel systems, and (2) generate alpha, beta, neutron and gamma decay emission spectra. A standard decay library is provided to perform decay calculations. For neutron activation and fuel depletion problems, neutron spectrum-dependent ORIGEN libraries are required and may be created from (1) user-defined spectrum and self-shielded cross sections using the COUPLE module or (2) interpolation of existing ORIGEN reactor libraries (precalculated by TRITON) using the Automated Rapid Processing (ARP) module. Post-processing using the OPUS module allows calculated isotopics and spectra to be sorted, ranked, and converted to other units.



S. J. Ball and R. K. Adams. MATEXP: A General Purpose Digital Computer Program for Solving Ordinary Differential Equations by the Matrix Exponential Method. Technical Report ORNL/TM-1933, Union Carbide Corporation (Nuclear Division), Oak Ridge National Laboratory, 8 1967.


H. Bateman. The Solution of Differential Equations Occurring in the Theory of Radioactive Transformations. Proc. Cambridge Phil. Soc., 15:423, 1910.


M. J. Bell. ORIGEN B-The ORNL Isotope Generation and Depletion Code . Technical Report ORNL-4628 (CCC-217), Union Carbide Corporation (Nuclear Division), Oak Ridge National Laboratory, 5 1973.


D. J. Pellarin, W. L. Matney and N. E. Bibler. :math:`\left (\alpha ,n \right )` neutron emission from dwpf glass. Technical Report DPST-86-212, Savannah River Laboratory, 1 1986. URL: https://www.osti.gov/servlets/purl/780500-Z8ooL7/native/.


I. C. Gauld. MOX Cross-Section Libraries for ORIGEN-ARP. Technical Report ORNL/TM-2003/2, UT-Battelle, LLC, Oak Ridge National Laboratory, Oak Ridge, TN (USA), 7 2003.


A. E. Isotalo and P. A. Aarnio. Comparison of depletion algorithms for large systems of nuclides. Annals of Nuclear Energy, 38(2):261 – 268, 2011. URL: http://www.sciencedirect.com/science/article/pii/S0306454910003889, doi:https://doi.org/10.1016/j.anucene.2010.10.019.


L. Lapidus and R. Luus. Optimal Control of Engineering Processes, pages 45–49. Blaisdell Publishing Co., Waltham, MA, 1967.


L. C. Leal, O. W. Hermann, S. M. Bowman, and C. V. Parks. ARP: Automatic Rapid Process for the Generation of Problem-Dependent SAS2H/ORIGEN-S Cross-Section Libraries. Technical Report ORNL/TM-13584, Lockheed Martin Energy Research Corporation, Oak Ridge National Laboratory, 4 1998.


ORNL. SCALE: A Comprehensive Modeling and Simulation Suite for Nuclear Safety Analysis and Design". Technical Report ORNL/TM-2005/39, Version 6.1, Oak Ridge National Laboratory, Oak Ridge, TN, 6 2011.


Maria Pusa. Rational Approximations to the Matrix Exponential in Burnup Calculations. Nuclear Science and Engineering, 169(2):155–167, 2011. URL: https://doi.org/10.13182/NSE10-81, doi:10.13182/NSE10-81.


Maria Pusa. Numerical Methods for Nuclear Fuel Burnup Calculations. PhD thesis, Aalto University, 2013.


Maria Pusa and Jaakko Leppänen. Computing the Matrix Exponential in Burnup Calculations. Nuclear Science and Engineering, 164(2):140–150, 2010. doi:10.13182/NSE09-14.


E. F. Shores. Data Updates for the SOURCES-4A Computer Code. Technical Report LA-UR-00-5016, Los Alamos National Laboratory, 10 2000. SOURCES-4C available from the Radiation Safety Information Computational Center (RSICC) as code package C00661.


D. R. Vondy. Development of a General Method of Explicit Solution to the Nuclide Chain Equations for Digital Machine Calculations. Technical Report ORNL/TM-361, Union Carbide Corporation (Nuclear Division), Oak Ridge National Laboratory, 10 1962.


Mark L. Williams. Perturbation theory for nuclear reactor analysis. CRC Press, Inc., 1986.


W. B. Wilson, R. T. Perry, W. S. Charlton, T. A. Parish, G. P. Estes, T. H. Brown, E. D. Arthur, M. Bozoian, T. R. England, D. G. Madland, and J. E. Stewart. SOURCES 4A: Code for Calculating :math:`\left (\alpha ,n\right )`, Spontaneous Fission, and Delayed Neutron Sources and Spectra. Technical Report LA-13639-MS, Los Alamos National Laboratory, 9 1999.


W. B. Wilson, R. T. Pery, J. E. Stewart, T. R. England, D. G. Madland, and E. D. Arthur. Development of the SOURCES Code and Data Library for the Calculation of Neutron Sources and Spectra from :math:`\left ( \alpha ,n \right )` Reactions, Spontaneous Fission, and :math:`beta^-` Delayed Neutrons. Technical Report LA-9841-PR, Los Alamos National Laboratory, Los Alamos, NM, 1983.


George Wolberg and Itzik Alfy. An energy-minimization framework for monotonic cubic spline interpolation. Journal of Computational and Applied Mathematics, 143:145–188, 6 2002.


R. E. Funderlic (ed.). The programmer’s handbook-a compendium of numerical analysis utility programs. Technical Report AEC Research and Development Report K-1729, Oak Ridge National Laboratory, Oak Ridge, TN (USA), 2 1968.