.. _6-6A: TSURFER Appendix A: Sensitivity/Uncertainty Notation ==================================================== In the following expressions, the notation E[X] represents the expected value of random variable X, which is equal to the integral of X weighted by its probability density function over the range of allowable values. .. _6-6a-1: Basic variables --------------- I = number of integral response (experiment and applications) used in GLLS analysis M = number of nuclear data parameters used in transport calculations (i.e., number of unique nuclide-reaction pairs multiplied by the number of energy groups) :math:`\boldsymbol{\alpha}` = M dimensional vector of prior nuclear data parameters, where component-i = :math:`\alpha`\ :sub:`i` **A** = M by M diagonal matrix of prior nuclear data parameters, where diagonal element **A**\ (i,i) = :math:`\alpha`\ :sub:`i` **m** = I dimensional vector of prior measured responses, where component-*i* = m\ :sub:`i` **M** = I by I diagonal matrix of prior measured responses, where diagonal element **M**\ (i,i) = m\ :sub:`i` :math:`\mathbf{k}(\boldsymbol{\alpha})` = I dimensional vector of prior calculated responses obtained with nuclear data :math:`\boldsymbol{\alpha}`, where component I = k\ :sub:`i` **K** = I by I diagonal matrix of prior calculated responses, where diagonal element **K**\ (i,i) = k\ :sub:`i` :math:`\mathbf{F}_{\mathbf{m} / \mathbf{k}}` = I by I diagonal matrix of "E/C" values = .. math:: \begin{array}{l} \mathbf{M} \mathbf{K}^{-1}=\mathbf{K}^{-\mathbf{1}} \mathbf{M} \end{array} where diagonal element .. math:: \mathrm{F}_{\mathrm{m} / \mathrm{k}}(\mathrm{i}, \mathrm{i})=\frac{\mathrm{m}_{\mathrm{i}}}{\mathrm{k}_{\mathrm{i}}} :math:`{{\mathbf{\hat{F}}}_{\mathbf{m/k}}}` = I by I diagonal matrix, where diagonal element .. math:: \mathrm{F}_{\mathrm{m} / \mathrm{k}}\left(\mathrm{i}, \mathrm{i}\right)=\frac{\mathrm{m}_{\mathrm{i}}}{\mathrm{k}_{\mathrm{i}}} for a relative-formatted response and :math:`\mathrm{F}_{\mathrm{m} / \mathrm{k}}(\mathrm{i}, \mathrm{i})=1` :math:`\boldsymbol{\alpha}'` = M dimensional vector of adjusted nuclear data parameters produced by GLLS procedure **m'** = I dimensional vector of adjusted measured responses produced by GLLS procedure :math:`\mathbf{k}'(\boldsymbol{\alpha}')` = I dimensional vector of adjusted calculated responses obtained with modified nuclear data :math:`\boldsymbol{\alpha}'` .. note:: :math:`\mathbf{k}'(\boldsymbol{\alpha}') = \mathbf{m}'`, due to GLLS adjustment procedure. :math:`\mathbf{\tilde{d}}\,` = original absolute discrepancy vector = :math:`\mathbf{k}-\mathbf{m}` , where component-i= :math:`{{k}_{i}}-{{m}_{i}}` **d** = original relative discrepancy vector = :math:`\mathbf{K}^{-1}(\mathbf{k}-\mathbf{m})` , where component-i = :math:`\left(\mathrm{k}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) / \mathrm{k}_{\mathrm{i}}` :math:`\mathbf{\hat{d}}` original mixed absolute-relative discrepancy vector, where component-i = :math:`\left(\mathrm{k}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) / \mathrm{k}_{\mathrm{i}}` for a relative-formatted response and :math:`\left(\mathrm{k}_{i}-\mathrm{m}_{\mathrm{i}}\right)` for an absolute-formatted response :math:`[\boldsymbol{\Delta} \boldsymbol{\alpha}]` = M dimensional vector of relative variations in nuclear data = :math:`\mathbf{A}^{-1}\left(\boldsymbol{\alpha}^{\prime}-\boldsymbol{\alpha}\right)` where component-i = :math:`\frac{\alpha_{i}^{\prime}-\alpha_{i}}{\alpha_{i}}` :math:`[\mathbf{\Delta m}]` = I dimensional vector of relative variations in measured responses = :math:`\mathbf{M}^{-1}\left(\mathbf{m}^{\prime}-\mathbf{m}\right)` where component-i = :math:`\frac{\text{m}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{m}}_{\text{i}}}}{{{\text{m}}_{\text{i}}}}\to \frac{\text{k}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{m}}_{\text{i}}}}{{{\text{m}}_{\text{i}}}}` :math:`[\mathbf{\Delta m}]` = I dimensional vector of absolute variations in measured responses = :math:`\mathbf{m}^{\prime}-\mathbf{m}` where component-i :math:`\text{m}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{m}}_{\text{i}}}\to \text{k}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{m}}_{\text{i}}}` :math:`[\mathbf{\Delta} \hat{\mathbf{m}}]` = I dimensional vector of mixed absolute-relative variations in measured responses, where component-i = :math:`\frac{\text{m}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{m}}_{\text{i}}}}{{{\text{m}}_{\text{i}}}}` for a relative-formatted response and :math:`\text{m}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{m}}_{\text{i}}}` for an absolute-formatted response :math:`[\boldsymbol{\Delta} \mathbf{k}]` = I dimensional vector of relative variations in calculated responses = :math:`\mathbf{K}^{-1}\left(\mathbf{k}^{\prime}-\mathbf{k}\right)` where component-i = :math:`\frac{\text{k}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{k}}_{\text{i}}}}{{{\text{k}}_{\text{i}}}}` :math:`[\boldsymbol{\Delta} \mathbf{k}]` = I dimensional vector of absolute variations in calculated responses = :math:`\mathbf{k'}-\mathbf{k}`, where component-i = :math:`\text{k}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{k}}_{\text{i}}}` :math:`[\boldsymbol{\Delta} \hat{\mathbf{k}}]` = I dimensional vector of mixed absolute-relative variations in calculated responses, where component-i = :math:`\text{k}{{\text{ }\!\!'\!\!\text{ }}_{\text{i}}}-{{\text{k}}_{\text{i}}}` for an absolute formatted response .. _6-6a-2: Sensitivity Relations --------------------- :math:`\widetilde{\mathbf{S}}_{\mathbf{k} \boldsymbol{\alpha}}` = I by M absolute sensitivity matrix; where element :math:`\widetilde{\mathbf{S}}_{\mathbf{k} \boldsymbol{\alpha}}(\mathrm{i}, \mathrm{n})=\alpha_{\mathrm{n}} \frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \alpha_{\mathrm{n}}}` :math:`\mathbf{S}_{\mathbf{k} \boldsymbol{\alpha}}` = I by M relative sensitivity matrix = :math:`\mathbf{K}^{-1} \mathbf{S}_{\mathbf{k} \boldsymbol{\alpha}}`, where element :math:`\mathbf{S}_{k \alpha}(i, n)=\frac{\alpha_{n}}{k_{i}} \frac{\partial k_{i}}{\partial \alpha_{n}}`. :math:`\hat{\mathbf{S}}_{\mathbf{k}\boldsymbol{\alpha}}` = I by M mixed absolute-relative sensitivity matrix, where element :math:`\hat{\mathbf{S}}_{\mathbf{k} \boldsymbol{\alpha}}(\mathrm{i}, \mathrm{n})=\frac{\alpha_{\mathrm{n}}}{\mathrm{k}_{\mathrm{i}}} \frac{\partial \mathrm{k}_{\mathrm{i}}}{\partial \alpha_{\mathrm{n}}}` if response-i is relative-formatted and :math:`\hat{\mathbf{S}}_{\mathbf{k} \boldsymbol{\alpha}}(\mathrm{i}, \mathrm{n})=\alpha_{\mathrm{n}} \frac{\partial \mathbf{k}_{\mathrm{i}}}{\partial \alpha_{\mathrm{n}}}` if response-i is absolute-formatted .. math:: \begin{array}{l} {[\boldsymbol{\Delta} \mathbf{k}]=\quad \mathbf{S}_{\mathbf{k} \boldsymbol{\alpha}}[\mathbf{\Delta} \boldsymbol{\alpha}]} \\ {{[\boldsymbol{\Delta} \mathbf{k}}]=\mathbf{S}_{\mathbf{k} \boldsymbol{\alpha}}[\mathbf{\Delta} \boldsymbol{\alpha}]} \\ {[\boldsymbol{\Delta} \hat{\mathbf{k}}]=\hat{\mathbf{S}}_{\mathbf{k} \boldsymbol{\alpha}}[\mathbf{\Delta} \boldsymbol{\alpha}]} \end{array} .. _6-6a-3: Absolute covariances -------------------- :math:`{{\mathbf{\tilde{C}}}_{\mathbf{mm}}}` = I by I covariance matrix for prior measured experiment responses where element :math:`{{\mathbf{\tilde{C}}}_{\mathbf{mm}}}`\(i,j) = :math:`E\left( \delta {{m}_{i}}\,\delta {{m}_{j}} \right)` :math:`{{\mathbf{\tilde{C}}}_{\mathbf{kk}}}` = I by I covariance matrix for prior calculated responses, where element :math:`{{\mathbf{\tilde{C}}}_{\mathbf{kk}}}`\ (i,j) = :math:`E\left( \delta {{k}_{i}}\,\delta {{k}_{j}} \right)` :math:`{{\mathbf{\tilde{C}}}_{\mathbf{dd}}}` = I by I covariance matrix for the discrepancies (k-m), where element :math:`{{\mathbf{\tilde{C}}}_{\mathbf{dd}}}`\ (i,j) = :math:`E\left( \delta {{d}_{i}}\,\delta {{d}_{j}} \right)` = :math:`\mathrm{E}\left(\delta\left(\mathrm{k}_{\mathrm{i}}-\mathrm{m}_{\mathrm{i}}\right) \delta\left(\mathrm{k}_{\mathrm{j}}-\mathrm{m}_{\mathrm{j}}\right)\right)` :math:`{{\mathbf{\tilde{C}}}_{\mathbf{k'k'}}}` = I by I covariance matrix for adjusted responses, where element :math:`{{\mathbf{\tilde{C}}}_{\mathbf{k'k'}}}`\(i,j) = :math:`E\left( \delta k{{'}_{i}}\,\delta k{{'}_{j}} \right)` :math:`\boldsymbol{\sigma}_{\mathbf{m}}` = I by I diagonal matrix containing standard deviations in prior measured responses, where diagonal element :math:`\widetilde{\sigma}_{\mathrm{m}}\left(\mathrm{i} \mathrm{i}\right)=\sqrt{\widetilde{\mathrm{C}}_{\mathrm{mm}}(\mathrm{i}, \mathrm{i})}` :math:`\boldsymbol{\sigma}_{\mathbf{k}}` = I by I diagonal matrix containing standard deviations in prior calculated responses, where diagonal element :math:`\widetilde{\sigma}_{\mathrm{k}}(\mathrm{i}, \mathrm{i})=\sqrt{\widetilde{\mathrm{C}}_{\mathrm{kk}}(\mathrm{i}, \mathrm{i})}` :math:`\boldsymbol{\sigma}_{\mathbf{k}^{\prime}}` .. _6-6a-4: Relative covariances -------------------- :math:`{{C}_{\mathbf{mm}}}` = I by I relative covariance matrix for prior measured responses, = :math:`\mathbf{M}^{-1}\left[\tilde{\mathbf{C}}_{\mathbf{m m}}\right] \mathbf{M}^{-1}` :math:`C_{m m}(i, j)=\frac{\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})}{\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}}` :math:`{{C}_{\boldsymbol{\alpha \alpha}}}` = M by M relative covariance matrix for prior nuclear data, where element :math:`\widetilde{C}_{\alpha \alpha}(i, j)` = :math:`\frac{\mathrm{E}\left(\delta \alpha_{\mathrm{i}} \delta \alpha_{\mathrm{j}}\right)}{\alpha_{\mathrm{i}} \alpha_{\mathrm{j}}}` :math:`{{C}_{\mathbf{kk}}}` = I by I relative covariance matrix for prior calculated responses = :math:`\mathbf{K}^{-1}\left[\mathbf{C}_{\mathrm{kk}}\right] \mathbf{K}^{-1}` where element :math:`C_{k k}(i, j)=\frac{\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})}{\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}}}` :math:`{{C}_{\mathbf{dd}}}` I by I relative covariance matrix for response discrepancies; = :math:`\mathbf{K}^{-1}\left[\mathbf{C}_{\mathbf{dd}}\right] \mathbf{K}^{-1}`, where element :math:`C_{d d}(i, j)=\frac{\mathrm{C}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j})}{\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}}}` :math:`\boldsymbol{\sigma}_{\mathbf{m}}` = I by I diagonal matrix containing relative standard deviations in measured responses, where diagonal element :math:`\sigma_{\mathrm{m}}\left(\mathrm{i}, \mathrm{i}\right)=\sqrt{\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{i})}` :math:`\boldsymbol{\sigma}_{\mathbf{k}}` = I by I diagonal matrix containing relative standard deviations in calculated responses, where diagonal element :math:`\sigma_{k^{\prime}}\left(\mathrm{i}, \mathrm{i}\right)=\sqrt{\mathrm{C}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i})}` :math:`\boldsymbol{\sigma}_{\boldsymbol{\alpha}}` = M by M diagonal matrix containing standard deviations in nuclear data, where diagonal element :math:`\boldsymbol{\sigma}_{\boldsymbol{\alpha}}(\mathrm{i}, \mathfrak{i})=\sqrt{C_{\alpha \alpha}(i, i)}` .. _6-6a-5: Mixed absolute-relative covariances ----------------------------------- If response-i and response-j are both absolute formatted, then .. math:: \begin{aligned} \hat{\mathrm{C}}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j}) &=\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j}) \\ \hat{\mathrm{C}}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j}) &=\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j}) \\ \hat{\mathrm{C}}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j}) &=\mathrm{C}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j}) \\ \hat{\mathrm{C}}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j}) &=\mathrm{C}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j}) \end{aligned} Likewise, if both response-i and response-j are relative-formatted, then .. math:: \begin{array}{l} \hat{\mathrm{C}}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})=\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})}{\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}}} \\ \hat{\mathrm{C}}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})=\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})}{\mathrm{m}_{\mathrm{i}} \mathrm{m}_{\mathrm{j}}} \\ \hat{\mathrm{C}}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j})=\mathrm{C}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j})}{\mathrm{d}_{\mathrm{i}} \mathrm{d}_{\mathrm{j}}} \\ \hat{\mathrm{C}}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j})=\mathrm{C}_{\mathrm{kk}^{\prime}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{kk}^{\prime}}(\mathrm{i}, \mathrm{j})}{\mathrm{k}_{\mathrm{i}}^{\prime} \mathrm{k}_{\mathrm{j}}^{\prime}} \end{array} If response-i is absolute-formatted and response-j is relative-formatted, then .. math:: \begin{array}{l} \hat{\mathrm{C}}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})}{\mathrm{k}_{\mathrm{j}}} \\ \hat{\mathrm{C}}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})}{\mathrm{m}_{\mathrm{j}}} \\ \hat{\mathrm{C}}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{dd}}(\mathrm{i}, \mathrm{j})}{\mathrm{d}_{\mathrm{j}}} \hat{\mathrm{C}}_{\mathrm{k}^{\prime}\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j})}{\mathrm{k}_{\mathrm{j}}^{\prime}} \end{array} Similar expressions can be derived if response-i is relative-formatted, and response-j is absolute-formatted. The I by I diagonal matrices of standard deviation values are the following: .. math:: \hat{\sigma}_{\mathrm{k}}(\mathrm{i}, \mathrm{i})=\left\{\begin{array}{ll} \sigma_{\mathrm{k}}(\mathrm{i}, \mathrm{i}) & \text { absolute-formatted } \\ \sigma_{\mathrm{k}}(\mathrm{i}, \mathrm{i}) & \text { relative-formatted } \end{array}\right. .. math:: \hat{\sigma}_{\mathrm{m}}(\mathrm{i}, \mathrm{i})=\left\{\begin{array}{ll} \sigma_{\mathrm{m}}(\mathrm{i}, \mathrm{i}) & \text { absolute-formatted } \\ \sigma_{\mathrm{m}}(\mathrm{i}, \mathrm{i}) & \text { relative-formatted } \end{array}\right. .. math:: \hat{\sigma}_{\mathrm{d}}(\mathrm{i}, \mathrm{i})=\left\{\begin{array}{ll} \sigma_{\mathrm{d}}(\mathrm{i}, \mathrm{i}) & \text { absolute-formatted } \\ \sigma_{\mathrm{d}}(\mathrm{i}, \mathrm{i}) & \text { relative-formatted } \end{array}\right. .. math:: \hat{\sigma}_{\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i})=\left\{\begin{array}{ll} \sigma_{\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i}) & \text { absolute-formatted } \\ \sigma_{\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i}) & \text { relative-formatted } \end{array}\right. .. _6-6a-6: Correlation matrices -------------------- :math:`\mathbf{R}_{\mathbf{kk}}` = I by I correlation matrix for prior calculated responses, where element :math:`\mathrm{R}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})` = :math:`\frac{\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})}{\sigma_{\mathrm{k}}(\mathrm{i}, \mathrm{i}) \sigma_{\mathrm{k}}(\mathrm{j}, \mathrm{j})}=\frac{\mathrm{C}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})}{\sigma_{\mathrm{k}}(\mathrm{i}, \mathrm{i}) \sigma_{\mathrm{k}}(\mathrm{j}, \mathrm{j})}=\frac{\hat{\mathrm{C}}_{\mathrm{kk}}(\mathrm{i}, \mathrm{j})}{\hat{\sigma}_{\mathrm{k}}(\mathrm{i}, \mathrm{i}) \hat{\sigma}_{\mathrm{k}}(\mathrm{j}, \mathrm{j})}` :math:`\mathbf{R}_{\mathbf{mm}}` = I by I correlation matrix for prior measured responses, where element :math:`\mathrm{R}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})` :math:`\frac{\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})}{\sigma_{\mathrm{m}}(\mathrm{i}, \mathrm{i}) \sigma_{\mathrm{m}}(\mathrm{j}, \mathrm{j})}=\frac{\mathrm{C}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})}{\sigma_{\mathrm{m}}(\mathrm{i}, \mathrm{i}) \sigma_{\mathrm{m}}(\mathrm{j}, \mathrm{j})}=\frac{\hat{\mathrm{C}}_{\mathrm{mm}}(\mathrm{i}, \mathrm{j})}{\hat{\sigma}_{\mathrm{m}}(\mathrm{i}, \mathrm{i}) \hat{\sigma}_{\mathrm{m}}(\mathrm{j}, \mathrm{j})}` :math:`\mathbf{R}_{\boldsymbol{\alpha} \boldsymbol{\alpha}}` = M by M correlation matrix for prior nuclear data, where element :math:`\mathrm{R}_{\alpha \alpha}(\mathrm{i}, \mathrm{j})=\frac{\mathrm{C}_{\alpha \alpha}(\mathrm{i}, \mathrm{j})}{\sigma_{\alpha}(\mathrm{i}, \mathrm{i}) \sigma_{\alpha}(\mathrm{j}, \mathrm{j})}` :math:`\mathbf{R}_{\mathbf{k}^{\prime} \mathbf{k}^{\prime}}` = I by I correlation matrix for adjusted responses, where element :math:`\mathrm{R}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}} \quad(\mathrm{i}, \quad \mathrm{j})` = :math:`\frac{C_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j})}{\sigma_{\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i}) \sigma_{\mathrm{k}^{\prime}}(\mathrm{j}, \mathrm{j})}=\frac{\mathrm{C}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j})}{\sigma_{\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i}) \sigma_{\mathrm{k}^{\prime}}(\mathrm{j}, \mathrm{j})}=\frac{\hat{\mathrm{C}}_{\mathrm{k}^{\prime} \mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{j})}{\hat{\sigma}_{\mathrm{k}^{\prime}}(\mathrm{i}, \mathrm{i}) \hat{\sigma}_{\mathrm{k}^{\prime}}(\mathrm{j}, \mathrm{j})}` ..